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Abstract

Neural network ensembles are well accepted as a route
to combining a group of weaker learning systems in
order to make a composite, stronger one. It has been
shown that low correlation of errors (“diverse mem-
bers”) will give rise to better ensemble performance.
Most techniques for creating diverse ensemble mem-
bers indirectly affect the learning trajectories, and are
built upon heuristics and intuition. Other techniques
directly influence the learning trajectory, by altering
the training algorithm itself. For a particular direct
technique, Negative Correlation Learning, we demon-
strate the effectiveness of the algorithm in reducing
correlations, as it relates to the size and complexity
of the ensemble. We offer some possible research av-
enues on this class of ensemble methods. This work
is a first step towards understanding the effectiveness
of explicitly incorporating diversity measures in error
functions during ensemble training.

1 Introduction

Neural network ensembles offer a number of advan-
tages over a single neural network system. They have
the potential for improved generalization, lower depen-
dence on the training set, and reduced training time
(Sharkey [16] provides a excellent summary of the lit-
erature).

Training a neural network generally involves a delicate
balance of various factors. The bias-variance decom-
position [2] states that the mean square error of an
estimator (in our case, a neural network) is equal to
the bias squared plus the variance. There is a trade-
off here — with more training, it is possible to achieve
lower bias, but at the cost of a rise in variance. Krogh
and Vedelsby [4] extend this concept to ensemble er-
rors, showing how the bias can be seen as the extent to
which the averaged output of the ensemble members
differs from the target function, and the variance is the

extent to which the ensemble members disagree. Ueda
and Nakano [18] further provide a detailed proof of how
the decomposition can be extended to bias-variance-
covariance. From this result, one way to decrease the
error is clear: decrease the covariance, ideally making
it strongly negative - though too large a decrease in
covariance can cause a rise in bias and variance. This
means that an ideal ensemble consists of highly correct
classifiers that disagree as much as possible (balancing
the covariance against the bias and variance), empiri-
cally verified by Opitz and Shavlik [11] among others.

Ensembles have been successfully applied to both re-
gression and classification problems in varied domains,
such as time series prediction [19], robotics [10], med-
ical diagnosis [15], and traffic flow prediction in a
telecommunications system [20]. Following from ob-
servations in our previous work [20] we investigate the
behaviour of the Negative Correlation algorithm [6] as
we increase the complexity of the ensemble on a par-
ticular problem. The primary aim of this paper is to
gain a deeper understanding of how Negative Corre-
lation Learning works and what improvements can be
made. A lot of techniques for creating diverse ensem-
ble members are built upon heuristics and intuition.
This work is a first step towards understanding the
effectiveness of explicitly incorporating diversity mea-
sures in error functions during ensemble training.

The rest of this paper is organised as follows. Sec-
tion 2 briefly reviews methods for creating effective
ensembles. Section 3 introduces the basic ideas be-
hind negative correlation learning. Section 4 presents
the experimental setup and Section 5 presents the re-
sults. Finally, Section 6 concludes the paper.

2 Creating an Effective Ensemble

Various algorithms have been proposed for training
ensembles to achieve better generalisation. They can
be broadly classified as manipulating the initial condi-



tions, the network architectures, the training data, or
the learning algorithm. All but the latter, we refer to
as implicit methods, in that they alter the learning en-
vironment, hoping that indirectly the learning trajec-
tories will emerge diverse. Manipulating the learning
algorithm is an ezplicit method for achieving diversity,
in that it directly influences the learning trajectories
of the networks to this end.

2.1 Implicit Methods

Early work trained networks independently, then av-
eraged the results, hoping to achieve higher perfor-
mance simply through differences in initial conditions
(different weight initializations). The idea was that
starting the networks in different areas of the weight
space, they would follow different trajectories in the
functional space. However, if a random initialization
by chance gives a set of weights that are far from a
solution, convergence can be exceedingly slow.

Manipulation of training data has been the most
widely investigated method. Boosting [1], bagging,
disjoint input sources [17], nonlinear transformations
of input [17], and noise injection [13] have all proved
their worth.

Manipulating the network topologies would mean hav-
ing hybrid ensembles, consisting of estimators that
work in different search spaces entirely. Different areas
of functional (solution) space will be more accessible
in certain search spaces than in others. Although this
at first seems a promising path, not much work seems
to have been done in the area. Partridge and Yates
[12] present the conjecture that variation in network
architectures is, after initial weights, the least useful
method of creating diversity, due to the methodolog-
ical similarities in the supervised learning algorithms.
Advantages may be revealed through more detailed
investigations of the behaviour of truly hybrid ensem-
bles, i.e. consisting of entirely different learning ma-
chines.

2.2 Explicit Methods

As mentioned, the previous three methods (manipulat-
ing initial weights, training data and architectures) are
all implicit methods for achieving diverse errors; the
networks may still converge to be highly correlated, re-
gardless of your efforts. Explicit methods manipulate
the training algorithm itself to produce decorrelated
errors. Rosen [14] used a regularisation term, train-
ing an ensemble sequentially, to decorrelate nets from
ones that had been trained before, although this did

not guarantee negative correlation of all the networks.
A recent advancement, Negative Correlation Learning
[6], trained the networks in parallel and negatively cor-
related the network errors. This had the advantage
of removing any bias in manipulation of the training
data, as well as elimination of the need for a gating net-
work, inherent in the Mixtures-of-Experts architecture
[3]. The Negative Correlation (NC) learning algorithm
has shown marked improvements over other ensemble
learning algorithms [6, 7, 8, 21],

3 Negative Correlation Learning

NC-learning [6] is an efficient ensemble training
method which can easily be implemented on top of
standard backpropagation in feedforward networks. It
incorporates a measure of ensemble diversity into the
error function of each network: thus each network not
only decreases its error on the function, but also in-
creases its diversity from other network errors. The
procedure has the following form: take a set of neural
networks N and a training pattern set P, each pattern
in P is presented and backpropagated on, simultane-
ously, by the networks.

In the standard backpropagation algorithm, the error
function for the output layer nodes is

S (Fi(n) — d(n))?,
where F;(n) is the output of network ¢ on pattern n,
and d(n) is the desired response for that pattern. In
NC-learning, the error function becomes

S(Fi(n) = d(n)” + Api(n), (1)

J#i
and X is an adjustable strength parameter for the
penalty. F'(n) is the output of the ensemble on pattern

n. A common ensemble output function is a simple av-
erage of the networks in the ensemble, i.e.,



As can be seen from (4), each network receives lower
error for moving its response closer to the target re-
sponse, and away from the mean response of all the
other networks — this is a trade-off, controlled by the
penalty strengh parameter, A. When A = 0.0, the
networks ignore the other errors, and this is termed

independent training, equivalent to not using NC at
all.

The dynamics of an algorithm incorporating such a di-
versity measure, and how to set its strength parameter,
A, are not well understood. In previous work [20] we
presented an evolutionary approach, essentially evolv-
ing the diversity of the ensemble. We unexpectedly
found situations where positive values for \ were pre-
ferred. Here we do not attempt to explain the negative
A phenomenon, but attempt to understand the general
behaviour of the algorithm more fully, as it relates to
ensemble size and complexity.

4 Experimental Setup

4.1 Dataset

The data was generated by the function:

f(z)= % [105in(7r$1$2)

1 2
+20 (2123 — 5) + 10.%'4 + 5.23‘5 —1 (5)

where = [z1,..,25] is an input vector whose com-
ponents lie between zero and one. The value of f(z)
lies between —1 and +1. The data consisted of in-
put/output patterns with the input vectors sampled
uniformly at random from the interval (0,1). Training
pattern set size was 500, testing set size was 1024, as
used by Liu [6] and previously Jacobs et al [3]. The
difference between their use of the data and the use
here, is that we use only 1 training set, whereas they
used 25 trials. The point of their investigations was
to gain an accurate measure of their method’s perfor-
mance on the function approximation - here we are
not concerned with the fit, but a better understanding
of how the error varies with alterations to the NC-
learning algorithm and the ensemble topology.

4.2 Ensemble setup

In the first part of the investigation we use an ensem-
ble architecture with 4 networks, each with the same

number of hidden nodes, H. We observe the perfor-
mance gain for the ensemble using NC-learning, com-
pared to independent training, as we vary H from 2
to 20. In the second part, we use an ensemble archi-
tecture consisting of N networks with 4 hidden nodes.
We observe the performance gain for the ensemble us-
ing NC-learning, compared to independent training,
as we vary N from 2 to 15. We then repeat this part,
using ensembles with 2 and then 6 hidden nodes, again
observing the gain over independent training. As men-
tioned, the A parameter is the emphasis put on achiev-
ing negative correlations. In the third part of the in-
vestigation we observe how the value of A relates to
the actual correlations achieved, when we scale up the
complexity of the ensemble: firstly with more hidden
nodes, and secondly with more networks. The mea-
sure used is Pearson’s correlation coefficient, averaged
over all possible pairings of networks in the ensemble
as in [6].

In all experiments, performance is measured at A =
0.0,0.3,0.6 and 0.9. A higher value of A means more
emphasis on decorrelating the errors, in preference to
each network just fitting the objective function; a value
of zero means NC-learning was not used at all. These
settings are not meant to be optimal, but were cho-
sen to demonstrate a wide range of performance.! All
networks have a single hidden layer, and use the logis-
tic activation function for all nodes, learning rate 0.1,
with no momentum term. The ensembles were trained
for 2000 iterations, and the error averaged over 30 ran-
dom weight initialisations. The ensemble is combined
by a uniform average of the outputs of the individual
networks.

5 Results

Figure 1 shows the percentage gain over independent
training that NC-learning provided to the ensemble. It
is clear that as we increase the complexity of the com-
ponent networks, NC-learning is of less and less utility.
In some cases, when the number of hidden nodes was
very large, a decrease in ensemble performance is ob-
served with NC-learning, as can be seen at H > 12.
One possible explanation for this is that as individual
networks become more and more capable, they can ap-
proximate the whole function by themselves, and so an
ensemble approach in general has less utility. Figure 2
supports this, showing a plot of the actual MSE of a

'"During initial experiments, particularly high error was
obtained at A = 1.0, this phenomena is under investigation,
but for this work, was avoided.
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Figure 1: Percentage performance gain of NC-learning
over independent training (A = 0.0), varying the num-
ber of hidden nodes, H, in a 4-network ensemble.
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Figure 2: Mean squared error, varying the number of
hidden nodes in a 4-network ensemble

single net, compared to an ensemble with and with-
out NC-learning. The ensemble error is immediately
very low with 6 hidden nodes, and A = 0.9; the single
net approaches the same level of performance around
11 hidden nodes, at which point the the NC-learning
cannot provide any significant gains. Furthermore,
when using NC-learning and networks which can ap-
proximate the whole function by themselves, the risk
may be that since the networks cannot fit the objec-
tive function any more accurately, they will choose to
overfit to the penalty function, causing a decrease in
testing generalisation.
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Figure 3: Percentage performance gain of NC-learning
over independent training (A = 0.0), varying the num-
ber of networks, N

We can see in figure 3 the percentage performance
gain of NC-learning over independent training, com-
paring the gain for ensembles using 2, 4 and 6 hid-
den nodes, as we increase the number of networks.
We observed that the largest percentage gain provided
by NC-learning was on 2 hidden node networks, with
A = 0.9, allowing at best a 13 percent increase. An in-
teresting point shows up here - the groups of 2 hidden
node networks showed the smallest percentage gain for
using NC, until the size of the group was increased. At
5 or more networks in the group, a gain of at least 12
percent was consistently observed. There is a larger
percentage gain in performance when the ensemble
consists of a large number of less complex networks.

NC-learning is an algorithm to decrease the correla-
tions between the networks. We observed its ability to
do this, as we vary the number of hidden nodes in a
four network ensemble. Figure 4 shows the mean cor-
relation coeflicient on the Y-axis, against the hidden
nodes from 2 to 20. This shows that the complexity
of the component networks did not have a large effect
on the eventual correlations achieved. Indeed, without
NC (A =0.0), the correlations show large fluctuations
with respect to the complexity. When NC is used at
A = 0.9, it seems to stabilise the correlation, making
it virtually invariant with respect to the network com-
plexity.

Figure 5 shows the mean correlation against the num-
ber of networks. It shows that for a given value of
A = 0.9, it becomes progressively harder to achieve
negative correlations with more networks in the group.
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Figure 4: Y-axis is the mean correlaton coefficient after
training, X-axis is the number of hidden nodes.
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Figure 5: Y-axis is the mean correlaton coefficient after
training, X-axis is the number of networks.

6 Conclusions & Further Work

We investigated the behaviour of one explicit method
for creating diverse neural ensembles, Negative Corre-
lation Learning, as we scale up the complexity of the
ensemble. We observed a decrease in the utility of
NC-learning as we increased the size of the networks
within the ensemble. It is shown that more complex
networks did not lead to more negative correlations. In
fact, correlation appeared to be invariant with respect
to network complexity.

We observed an increase in the utility of NC-learning
when we increased the number of networks with a rel-
atively small number of hidden nodes, for a particular

setting of the strength parameter. It appears that the
number of networks in the ensemble is more impor-
tant than individual network complexity. The benefits
of the NC technique are best shown when combining
relatively weak estimators - when each individual net-
work is powerful enough to approximate the function
itself, NC-learning can do little for the group. We ob-
served the mean correlation coefficient of the ensemble,
as it relates to ensemble complexity: a higher value
of A stabilised the correlations, while it was still not
highly affected by the number of hidden nodes; with a
large number of networks it proved harder to achieve
negative correlations.

Kuncheva and Whitaker [5] have recently presented
work relating various diversity measures to the major-
ity vote, on classification problems. It seems plausible
that similar relationships might hold for other combi-
nation methods with the particular diversity measure
implemented by NC-learning. Liu et al [9] have found
links between information theory and diversity in an
ensemble with an evolutionary approach.

It is important to note two families of explicit diversity
methods. The first we term error dependency methods:
those which evaluate pairwise dependency on a single
pattern, such as NC-learning, using a form like (2).
The second is error coincidence methods: those which
are evaluated over a training dataset, taking into ac-
count the coincidence of errors on various patterns.
Our future work consists of the use of different mea-
sures, as well as different methodologies for incorpo-
rating them.

A lot of techniques for creating diverse ensemble mem-
bers are built upon heuristics and intuition. This work
is a first step towards understanding the effectiveness
of explicitly incorporating diversity measures in error
functions during ensemble training.
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